
Hybrid Cross Approximation and Shared-Memory Programming for
the Electric Field Integral Equation

Priscillia Daquin1, Jean-René Poirier1, Ronan Perrussel1, and Alfredo Buttari2
1Université de Toulouse, CNRS, LAPLACE, Toulouse 31071, France, firstname.name@laplace.univ-tlse.fr

2Université de Toulouse, CNRS, IRIT, Toulouse 31000, France, alfredo.buttari@enseeiht.fr

The Boundary Element Method (BEM) computation of the scattering of an electromagnetic wave can be accelerated using the
hierarchical matrix format (H-matrix). The matrix blocks representing the far interactions are approximated using the Hybrid Cross
Approximation (HCA). It is then possible to perform an iterative solution method. The shared-memory parallelism of some operations
will help to further optimize the total solution time of the scattering problem.

Index Terms—Electric field integral equation (EFIE), H-matrix, hybrid cross approximation (HCA), parallel computing.

I. INTRODUCTION

SCATTERING problems can be modeled by integral
equations, such as the Electric Field Integral Equation

(EFIE) [1], using the Boundary Element Method (BEM). Their
discretization leads to a dense linear system

Zj = e (1)

with Z ∈ Cn×n defined as

Zij =

∫
Γ×Γ

G(x,y)

(
ϕi(y) ·ϕj(x)

− 1

k2
0

∇Γ ·ϕi(y)∇Γ ·ϕj(x)

)
dxdy, (2)

and e = (ek)1≤k≤n defined as

∀k ∈ {1, ..., n} ek =
i

k0Z0

∫
Γ

Einc(x) ·ϕk(x) dx, (3)

where n is the number of Degrees Of Freedom (DOFs), ϕi

the ith Galerkin basis function, ∇Γ the surface gradient, k0

the wave number, Z0 the impedance of free space and G the
Green kernel defined as

G(x,y) =
e−ik0|x−y|

|x− y|
. (4)

The a priori complexity of such a calculation is proportional
to n2 and restricts the BEM to relatively coarse grids. Hence
we need to use a method to improve this complexity.

In this paper, we consider the H-matrix format obtained
by performing a Hybrid Cross Approximation (HCA). We
then evaluate the optimization achieved thanks to the shared-
memory parallel programming of the H-matrix-vector product,
which will lead to an improved iterative solver.

II. H-MATRIX

A. Clustering

The H-matrix term denotes a data-sparse matrix format
that enables the memory storage and the complexity of the
arithmetic operations, as the matrix-vector product, to scale as
n log(n) instead of n2. Thus it allows for solving large-scale
problems efficiently using integral equation methods [2].

A H-matrix is related to a hierarchy defined by a clustering
technique of the DOFs. This clustering is performed by recur-
sive bisections of the bounding boxes B containing the DOFs,
until each box contains a maximum of nmax DOFs. This leads
to a binary tree and a quadtree embodying the hierarchical
structure of the H-matrix (see Fig. 1).

1

1

2

1

2

3

4

c
(1)
1

c
(2)
1 c

(2)
2

c
(3)
1 c

(3)
2 c

(3)
3 c

(3)
4

1

1

1

2

1 2

1

2

3

4

1 2 3 4

Fig. 1. Clustering of a circle discretized with 32 DOFs with nmax = 8

(3 hierarchical levels). Node c
(i)
j is the index set for the jth cluster of the

ith level. Block k, l represents the interactions between clusters k and l. The
green blocks can be compressed unlike the red ones.

B. Low-rank matrices

Once a hierarchy is defined, we can compress the blocks
corresponding to interactions between distant clusters. Let us
denote by r̂ and ĉ the set of DOFs indices in two such
distant clusters. The compression can be done by approxi-
mating directly Z|r̂×ĉ, the submatrix of Z for the indices in
r̂ × ĉ, by a low-rank matrix computed by the Adaptive Cross
Approximation (ACA) [2], or by replacing the kernel g by a
degenerate g̃ as it is done in the Hybrid Cross Approximation
(HCA) [3] (see Section III). Both approaches lead to a low-
rank approximation with a prescribed error ε as

Z|r̂×ĉ ≈ UV H (5)

where Z|r̂×ĉ ∈ Cm×n, U ∈ Cm×k, V ∈ Cn×k, and k is the
rank of the approximation.

C. Arithmetic of H-matrices

We can develop an arithmetic of H-matrices [4] including
a H-matrix-vector product, a rounded sum between two H-
matrices of same clustering structure, a formatted multiplica-
tion or a H-LU decomposition.

Once the H-matrix is assembled, we can also lower again
the storage by using a coarsening technique which recursively
agglomerates two or four blocks into one block and thus
simplify the H-matrix structure [2]. When used, this coars-
ening technique helps to reduce the computation time of the
arithmetic operations without damaging the overall accuracy.

III. HYBRID CROSS APPROXIMATION

The HCA [3] was first described in order to overcome some
limitations of the ACA [2] concerning geometries with edges
and kernels that contain a differential operator. This compres-
sion method has been applied to a magnetostatic formulation
in [5], but is still rarely used today. We define the method for
a kernel function g such as:

g(x,y) = DxDyγ(x,y) (6)

where operators Dx and Dy are differential operators respec-
tively according to x and y, and γ an asymptotically smooth
function, being well suited for the ACA computation.

The coefficients of Z built with the Galerkin method are
defined for i ∈ {1, ..., nx} and j ∈ {1, ..., ny} as

Zij =

∫
Γ×Γ

ϕi(x)g(x,y)ψj(y) dxdy (7)

The first step of the HCA consists in selecting some inter-
polation points (xi)i∈I and (yj)j∈J in the bounding boxes Bx
and By . Several approaches are available, all of them using
the ACA algorithm. We chose to apply it on a tensorization of
order m Chebychev interpolation points of Bx and By .

Applying the ACA algorithm with a precision εACA = εHCA
on those points provides two lists of pivot points (xi)i∈I and
(yj)j∈J , with k = #I = #J the approximation rank. The
degenerate kernel is g̃ written as g̃(x,y) = DxDyγ̃(x,y) with

γ̃(x,y) =

γ(x,y1)
...

γ(x,yk)

T

M−1

γ(x1,y)
...

γ(xk,y)

 (8)

and M defined as mij = γ(xi,yj).
Defining matrices A ∈ Cnx×k and B ∈ Cny×k such as

Ail =

∫
Γ

ϕi(x)Dxγ(x,yl) dx

Bjm =

∫
Γ

ψj(y)Dyγ(xm,y) dy

(9)

(10)

and factorizing M−1 = CTD leads to

Z̃ij =

k∑
p=1

(
k∑

l=1

CplAil

)
·

(
k∑

m=1

DpmBjm

)
. (11)

Finally, Z̃ = UV H with U = ACT and V H = BDT .
In Table I some results are provided for different values of

m and εHCA = 1× 10−4 for a metallic sphere of radius r =
1m with n = 112206 DOFs. The integrations are computed
with 3 Gauss-Legendre quadrature points on each element. We
evaluate the relative error on the bistatic Radar Cross Section
compared to the analytical solution.

TABLE I
NUMERICAL VALIDATION OF THE HCA.

m 2 3 4
Assembly time (s) 2621.15 4422.56 5005.74
Memory (GB) 9.42 7.20 6.97
Error 3.21× 10−4 9.94× 10−5 9.93× 10−5

IV. SHARED-MEMORY PARALLELISM

The H-matrix format is well suited to the use of a parallel
computation on a shared memory architecture [6], as it is
structured into independent blocks. It is thus possible to order
the blocks corresponding to the leaves of the block cluster tree
into a list of blocks. We apply a OpenMP parallel loop on
this list, which will distribute the computation to the available
threads. The parallel calculation allows for reducing the total
computation time of some operations and helps to further
optimize the solution time.

In order to validate the efficiency of the parallelization of the
H-matrix-vector product, we applied it 100 times for different
values of n (the number of DOFs) and sharing it into 2, 4, 8
and 16 threads. Table II presents the results of this test.

TABLE II
COMPUTATION TIME OF 100H-MATRIX-VECTOR PRODUCTS.

n Sequential Parallel
2 threads 4 threads 8 threads 16 threads

4521 3.32 s 1.60 s 1.31 s 0.70 s 0.62 s
18 294 19.95 s 8.19 s 6.17 s 4.40 s 2.87 s
41 046 54.29 s 20.49 s 16.18 s 13.21 s 8.78 s
69 930 102.37 s 38.38 s 30.68 s 26.55 s 17.76 s

The parallel computation of the H-matrix-vector product
is faster than the sequential computation and shows some
scalability up to 16 cores, considered that the H-matrix-vector
operation is memory bound. The work on this operation is still
in progress and will allow for performing a shared-memory
parallel iterative solver.

REFERENCES

[1] Sadasiva M. Rao, Donald R. Wilton, and Allen W. Glisson. Electromag-
netic Scattering by Surfaces of Arbitrary Shape. IEEE Transactions on
Antennas and Propagation, 30:409–417, 1982.

[2] Mario Bebendorf. Approximation of boundary element matrices. Nu-
merische Mathematik, 86:565–589, 2000.

[3] Steffen Börm and Lars Grasedyck. Hybrid cross approximation of integral
operators. Numerische Mathematik, 101:221–249, 2005.

[4] Wolfgang Hackbusch. A Sparse Matrix Arithmetic Based on H-Matrices.
- Part I: Introduction to H-Matrices. Computing, 62:89–108, 1999.

[5] Jonathan Siau, Olivier Chadebec, Ronan Perrussel, and Jean-René Poirier.
Hybrid Cross Approximation for a Magnetostatic Formulation. IEEE
Transactions on Magnetics, 51, 2015.

[6] Ronald Kriemann. Parallel h-matrix arithmetics on shared memory
systems. Computing, 74:273–297, 2005.

	Introduction
	H-matrix
	Clustering
	Low-rank matrices
	Arithmetic of H-matrices

	Hybrid Cross Approximation
	Shared-memory parallelism
	References

